Description:

The IODIM6-MI multiplexes 6 VFC or $24 \mathrm{Vac} / \mathrm{dc}$ signals into a single analogue output. $0-10 \mathrm{Vdc}, 2-10 \mathrm{Vdc}$ or $4-20 \mathrm{~mA}$, and $0-20 \mathrm{~mA}$ output variants are available, making the unit compatible with a large range of BMS equipment. The input registers as active when the contact is closed. Additionally, jumpers are fitted to allow each input to be manually overridden for commissioning and testing purposes. The output sequence can also be reversed as required by some types of controller and control strategies.

Features:

- $6 \times \mathrm{VFC}$ or $24 \mathrm{Vac} / \mathrm{dc}$ inputs
- Voltage and current output variants
- Operates from $24 \mathrm{Vac} / \mathrm{dc}$ power supply
- Input simulation
- Reverse Action
- DIN rail mounting
- LED input status indication

Technical Specification:

Inputs:

Voltage Output:

Current Output:
LED Indication:
Power Supply:
Power Consumption:
Terminals:
Ambient Temperature:
Dimensions:
Weight:
Country of Origin:
$6 x$ Volt free contacts or $24 \mathrm{Vac} / \mathrm{dc}$ input signals $0-10 \mathrm{Vdc}$ at maximum load 10 mA (2-10Vdc link selectable) 4 to 20 mA (link selectable $0-20 \mathrm{~mA}$), max. resistance of load 500Ω
ON when input is ON
$24 \mathrm{Vac} / \mathrm{dc}(\pm 15 \%)$
24 Vdc 40 mA max.
24 Vac 60 mA max
Rising clamp for $0.5-2.5 \mathrm{~mm}^{2}$ cable $0-50^{\circ} \mathrm{C}$
68(W) x 82(H) x 44(D) (max.)
120 g
United Kingdom

Installation:

The IODIM6 should be installed by a suitably qualified technician in conjunction with any guidelines for the equipment which it is to be connected to. Field wiring should be installed to satisfy the requirements set out by the manufacturer of the equipment that the module is being connected to using screened cabled where necessary. Please note that these modules are not suitable for use with the mains voltage.

The IODIM6 would typically be located within the controller section of a BMS control panel. The module can be snapped on to a standard "top hat" profile DIN rail by levering the clip downwards to allow the unit to locate without the need for excessive force.

Order Codes:

IODIM6-MI-I	Six Channel Digital Input Multiplexer (Current)
IODIM6-MI-V	Six Channel Digital Input Multiplexer (Voltage)

Connection:

The diagram below shows the terminal designations for the IODIM6.
The digital input terminals are for use with volt free contacts or 24 V signals or a combination of either signals.

Jumpers:

Mode:	Normal or reverse action
	$\mathrm{N}=$ Normal
	$\mathrm{R}=$ Reverse
Offset:	Voltage versions
	Off $=0-10 \mathrm{~V}$
	On $=2-10 \mathrm{~V}$
	Current versions
	Off $=0-20 \mathrm{~mA}$
	On $=4-20 \mathrm{~mA}$

Six Channel Digital Input Multiplexer
 Voltage/Current
 IODIM6-MI-*

Page 2 of 2

Example Connections:

VF Contacts

Commissioning and Testing:

The module has six independent inputs giving a total number of 64 different output values. The output value is calculated based on binary encoding method as shown in the table below. Each input status has an output value associated with it. The module output value is the sum of all these output values.

Outputs	IN 1	IN 2	IN 3	IN 4	IN 5	IN 6
O-10Vdc	0.15625	0.3125	0.625	1.25	2.5	5
$2-10 \mathrm{Vdc}$	0.125	0.25	0.5	1	2	4

For 2-10Vdc outputs, it is necessary to add 2 V to the total value
0-20mA
0.3125
0.625
1.25
$2.5 \quad 5$
10
4-20mA
0.25
0.5
20
8

For $4-20 \mathrm{~mA}$ outputs, it is necessary to add 4 mA to the total value

Outputs	Steps	Minimum	Maximum
O-10Vdc:	0.15625 Vdc	0 Vdc	9.84 Vdc
2-10Vdc:	0.125 Vdc	2 Vdc	9.87 Vdc
0-20mA:	0.3125 mA	0 mA	19.6875 mA
4-20mA:	0.25 mA	4 mA	19.75 mA

Examples:
0 -10Vdc: \quad Inputs 1,2 and 6 are ON
$2-10 \mathrm{Vdc}$
0-20mA:
4-20mA: Inputs 1, 2 and 6 are ON Inputs 1, 2 and 6 are ON Inputs 1, 2 and 6 are ON

$$
\begin{array}{lll}
\Rightarrow & 0.15625+0.3125+5 & 5.47 \mathrm{Vdc} \\
=> & 2 \mathrm{~V}+0.125+0.25+4.0 & 6.27 \mathrm{Vdc} \\
=> & 0.3125+0.625+10 & 10.94 \mathrm{~mA} \\
=> & 4 \mathrm{~mA}+0.25+0.5+8 & 12.75 \mathrm{~mA}
\end{array}
$$

Factory settings:

The module is factory tested and set to normal mode
No offset for V and offset for I ($0-10 \mathrm{Vdc} \& 4-20 \mathrm{~mA}$)

Trend Scaling:

Scaling Type	5 - characterise
Input 1	0
Output 1	2
Input 2	9.84
Output 2	254
Input Type	Voltage
Upper Limit	User defined
Lower Limit	User defined
Points Used	2

